Đại số lớp 7

NA

tim xy biết y+z +1/x =x+z+2/y=x+y-3/z=1/x+y+z

NQ
17 tháng 3 2017 lúc 21:07

Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)

Bình luận (4)
HQ
17 tháng 3 2017 lúc 22:41

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Mà đề bài cho:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=2\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\\x+y-3=2z\left(3\right)\\x+y+z=\dfrac{1}{2}\left(4\right)\end{matrix}\right.\)

Ta có:

\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được:

\(\dfrac{1}{2}-x+1=2x\Rightarrow\dfrac{3}{2}=3x\Rightarrow x=\dfrac{1}{2}\)

\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được:

\(\dfrac{1}{2}-y+2=2y\Rightarrow\dfrac{5}{2}=3y\Rightarrow y=\dfrac{5}{6}\)

\((*)\) \(x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+z=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{4}{3}+z=\dfrac{1}{2}\Leftrightarrow z=\dfrac{-5}{6}\)

Vậy: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

Bình luận (4)
LL
21 tháng 9 2018 lúc 10:44

bạn Hoang Hung Quan lầm rất chính xác, thanks nha. mk cũng đang bí bài này

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
CT
Xem chi tiết
NQ
Xem chi tiết
JK
Xem chi tiết
CD
Xem chi tiết
BC
Xem chi tiết
MS
Xem chi tiết
TA
Xem chi tiết
TD
Xem chi tiết