Violympic toán 7

NL

Tìm x , y , z biết :

\(\begin{cases} \dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\\ 2x + 3y - 5z = -60 \end{cases}\)

H24
26 tháng 9 2018 lúc 20:19

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

\(=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)

\(3x=2y\)\(\dfrac{x}{2}=\dfrac{y}{3}\)

\(2z=5x\)\(\dfrac{x}{2}=\dfrac{z}{5}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{9}=\dfrac{5z}{25}\)\(=\dfrac{2x+3y-5z}{6+9-25}=\dfrac{-60}{-10}=6\)

\(\dfrac{x}{2}=6\)\(x=12\)

\(\dfrac{y}{3}=6\)\(y=18\)

\(\dfrac{z}{5}=6\)\(z=30\)

Vậy \(x=12;y=18;z=30\)

Bình luận (0)

Các câu hỏi tương tự
XT
Xem chi tiết
NL
Xem chi tiết
QH
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
CV
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết