Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 7

KT

Tìm x, y nguyên dương, biết :

\(\frac{x}{2}=\frac{y}{3}\)\(x^2+y^2=52\)

VT
12 tháng 2 2020 lúc 11:09

Ta có:

\(\frac{x}{2}=\frac{y}{3}.\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)\(x^2+y^2=52.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=4\left(vìx>0\right)\\\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=6\left(vìy>0\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;6\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DT
Xem chi tiết
PT
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
YT
Xem chi tiết
DA
Xem chi tiết
TH
Xem chi tiết