Violympic toán 7

TD

tìm x

\(\left|x+\dfrac{1}{7}\right|=\dfrac{2}{3}\)

\(\left|x\right|-\dfrac{3}{2}=\dfrac{1}{4}\)

\(\dfrac{4}{5}-\left|x-\dfrac{1}{6}\right|=\dfrac{2}{3}\)

NH
17 tháng 9 2017 lúc 17:51

a/ \(\left|x+\dfrac{1}{7}\right|=\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{7}=\dfrac{2}{3}\\x+\dfrac{1}{7}=\dfrac{-2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{21}\\x=\dfrac{-17}{21}\end{matrix}\right.\)

Vậy ................

b/ \(\left|x\right|-\dfrac{3}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow\left|x\right|=\dfrac{7}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=\dfrac{-7}{4}\end{matrix}\right.\)

Vậy ...

c/ \(\dfrac{4}{5}-\left|x-\dfrac{1}{6}\right|=\dfrac{2}{3}\)

\(\Leftrightarrow\left|x-\dfrac{1}{6}\right|=\dfrac{2}{15}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{6}=\dfrac{2}{15}\\x-\dfrac{1}{6}=\dfrac{-2}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=\dfrac{1}{30}\end{matrix}\right.\)

Vậy ..

Bình luận (0)
HD
17 tháng 9 2017 lúc 18:32

\(\left|x+\dfrac{1}{7}\right|=\dfrac{2}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{7}=\dfrac{2}{3}\\x+\dfrac{1}{7}=\dfrac{-2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{21}\\x=\dfrac{-17}{21}\end{matrix}\right.\)

\(\left|x\right|-\dfrac{3}{2}=\dfrac{1}{4}\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{1}{4}\\x-\dfrac{3}{2}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=\dfrac{5}{4}\end{matrix}\right.\)

\(\dfrac{4}{5}-\left|x-\dfrac{1}{6}\right|=\dfrac{2}{3}\)

\(\Rightarrow\left|x-\dfrac{1}{6}\right|=\dfrac{4}{5}-\dfrac{2}{3}\)

\(\Rightarrow\left|x-\dfrac{1}{6}\right|=\dfrac{2}{15}\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{6}=\dfrac{2}{15}\\x-\dfrac{1}{6}=\dfrac{-2}{15}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=\dfrac{1}{30}\end{matrix}\right.\)

Chúc bạn học tốt!

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
DS
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
ZZ
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết