Violympic toán 6

HT

Tìm x, biết rằng:

a, \(\dfrac{1}{5\cdot8}\) + \(\dfrac{1}{8\cdot11}\) + \(\dfrac{1}{11\cdot14}\) + ... + \(\dfrac{1}{x\left(x+3\right)}\) = \(\dfrac{101}{1540}\)

b, 1+\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{1}{x\left(x+1\right)\div2}\) = \(1\dfrac{1991}{1993}\)

HT
13 tháng 3 2017 lúc 20:39

Các bạn giúp tớ với, sáng mai mình học rồi.hihihihihahavui

Bình luận (0)
LF
13 tháng 3 2017 lúc 22:31

a)\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)

Bình luận (0)
QN
14 tháng 3 2017 lúc 20:15

a) \(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+\(\dfrac{1}{11.14}\)+...+\(\dfrac{1}{x\left(x+3\right)}\)=\(\dfrac{101}{1540}\)

=\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)

=\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

=> \(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

=> \(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)

=> \(\dfrac{1}{x+3}=\dfrac{1}{308}\)

=> x+3=308

=> x=308-3

=> x=305

b) \(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{1991}{1993}\)

= \(\dfrac{1}{2}.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)

= \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{3984}{3986}\)

= \(2-\dfrac{1}{1.2}+3-\dfrac{2}{2.3}+4-\dfrac{3}{3.4}+...+x+1-\dfrac{x}{x\left(x+1\right)}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

= \(1-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

=> \(\dfrac{1}{x+1}=1-\dfrac{3984}{3986}\)

=> \(\dfrac{1}{x+1}=\dfrac{2}{3986}=\dfrac{1}{1993}\)

=> x+1= 1993

=> x= 1993-1

=> x=1992

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
NG
Xem chi tiết
CV
Xem chi tiết
DX
Xem chi tiết
Xem chi tiết
HH
Xem chi tiết
NC
Xem chi tiết
PA
Xem chi tiết
PN
Xem chi tiết