Violympic toán 7

TK

Tìm x, biết \(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+\left|x+\dfrac{1}{3\cdot4}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=100x\)

DV
23 tháng 10 2017 lúc 21:49

\(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\ge0\forall x\)

\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\dfrac{1}{1\cdot2}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=x+\dfrac{1}{1\cdot2}+...+x+\dfrac{1}{99\cdot100}\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1\cdot2}+...+\dfrac{1}{99\cdot100}\right)=100x\)

\(\Rightarrow99x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)=100x\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}=x\)

\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=x\)

\(\Rightarrow x=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
DX
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
DL
Xem chi tiết
LQ
Xem chi tiết
TD
Xem chi tiết
TH
Xem chi tiết
HA
Xem chi tiết