Ta có: \(\dfrac{x+1}{2017}+\dfrac{x+1}{2018}=\dfrac{x+1}{2019}+\dfrac{x+1}{2020}\)
\(\Rightarrow\left(\dfrac{x+1}{2017}+\dfrac{x+1}{2018}\right)-\left(\dfrac{x+1}{2019}+\dfrac{x+1}{2020}\right)=0\)
\(\Rightarrow\dfrac{x+1}{2017}+\dfrac{x+1}{2018}-\dfrac{x+1}{2019}-\dfrac{x+1}{2020}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2020}\right)=0\)
Vì \(\dfrac{1}{2017}>\dfrac{1}{2018}>\dfrac{1}{2019}>\dfrac{1}{2020}>0\) nên
\(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2020}>0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)