Violympic toán 6

HA

Tìm x, biết:

\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+.....+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)

RT
18 tháng 8 2020 lúc 22:19

\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)

\(1+\frac{1}{3}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{x+1-x}{x\left(x+1\right)}=\frac{1990}{1991}\)

\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}-\frac{1}{x-1}=\frac{1990}{1991}\)

\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x-1}=\frac{1990}{1991}\)

\(\frac{1}{x-1}=\frac{11}{6}-\frac{1990}{1991}=\frac{9961}{11946}\)

\(x-1=\frac{11946}{9961}\Rightarrow x=\frac{21907}{9961}\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
DK
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết