a) \(\left|x\right|< 1\Rightarrow-1< x< 1\Rightarrow x=0\)
b) \(\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
c) \(\left|x+2\right|=\left|12-10\right|\)
\(\Leftrightarrow\left|x+2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=-2\\x+2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-2\right)-2\\x=2-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
d) \(\left|x+3\right|=2x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\\left[{}\begin{matrix}x+3=2x-2\\x+3=\left(-2x\right)+2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge2\\\left[{}\begin{matrix}x-2x=-2-3\\x-\left(-2x\right)=2-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}-x=-5\\3x=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{-1}{3}\end{matrix}\right.\end{matrix}\right.\)
Vì \(\dfrac{-1}{3}< 1\) nên \(x=5\) thỏa mãn đề bài.
e) \(\left|x+1\right|>4\)
\(\Rightarrow\left[{}\begin{matrix}x+1>4\\x+1< 4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 3\end{matrix}\right.\)
f) \(\left|x-3\right|=\left|2x-1\right|\)
(cho thời gian suy nghĩ, mình chưa làm dạng này bao giờ)
g) \(\left|2x-1\right|-1+2x=0\)
\(\Rightarrow\left|2x-1\right|=-2x+1\)
Mà \(\left|2x-1\right|=\left|-2x+1\right|\)
\(\Rightarrow\left|-2x+1\right|=-2x+1\)
\(\Rightarrow-2x+1\ge0\)
\(\Rightarrow-2x\ge-1\)
\(\Rightarrow x\ge\dfrac{-1}{-2}=\dfrac{1}{2}\)
h) \(\left|3-2x\right|=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3\ge0\\\left[{}\begin{matrix}3-2x=2x-3\\3-2x=-2x+3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge3\\\left[{}\begin{matrix}3+3=2x+2x\\3-3=-2x+2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\left[{}\begin{matrix}6=4x\\0=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\end{matrix}\right.\end{matrix}\right.\)
Vì \(0=0\) luôn đúng nên ta có \(x=\dfrac{3}{2}\)
j) \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\)
(đầu hàng)