\(\left(2x+3\right)^2=\dfrac{9}{121}\)
\(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
\(\left(2x+3\right)=\dfrac{3}{11}\)
\(2x=\dfrac{3}{11}-3\)
\(2x=-\dfrac{14}{11}\)
\(x=-\dfrac{7}{11}\)
\(\left(2x+3\right)^2=\dfrac{9}{121}\)
\(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
\(\Rightarrow2x+3=\dfrac{3}{11}\)
=> 2x = \(\dfrac{3}{11}-3\)
=> 2x = \(-\dfrac{30}{11}\)
=> x = \(-\dfrac{30}{11}\div2=-\dfrac{15}{11}\)
\(\left(2x+3\right)^2=\dfrac{9}{121}\)
\(\Rightarrow\left(2x+3\right)^2=\left(\pm\dfrac{3}{11}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=\dfrac{3}{11}\\2x+3=-\dfrac{3}{11}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-\dfrac{30}{11}\\2x=-\dfrac{36}{11}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{15}{11}\\x=-\dfrac{18}{11}\end{matrix}\right.\)