Chương III : Phân số

H24

Tìm x:

\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{2015}{2017}\)

NL
8 tháng 4 2018 lúc 10:01

1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{2}{2}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{1.2}{1.2}\) + \(\dfrac{1.2}{2.3}\) + \(\dfrac{1.2}{3.4}\) + \(\dfrac{1.2}{4.5}\) + ... + \(\dfrac{1.2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> 2(\(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{x\left(x+1\right)}\)) = 1\(\dfrac{2015}{2017}\)

=> 2(1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\)) = 1\(\dfrac{2015}{2017}\)

=> 2(1 - \(\dfrac{1}{x+1}\)) = \(\dfrac{4032}{2017}\)

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{4032}{2017}\) : 2

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{2016}{2017}\)

=> \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{2016}{2017}\)

=> \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2017}\)

=> x + 1 = 2017

=> x = 2017 - 1

=> x = 2016

Bình luận (2)

Các câu hỏi tương tự
LK
Xem chi tiết
HD
Xem chi tiết
LD
Xem chi tiết
CV
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
CC
Xem chi tiết
NA
Xem chi tiết