Ôn tập toán 6

HL

Tìm số tự nhiên x biết:

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)

\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{2}{x.\left(x+1\right)}\)

PD
16 tháng 5 2016 lúc 19:40

Đặt A=1/3+1/6+1/10+...+2/x*(x+1)

        1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)

         1/2A=1/6+1/12+1/20+...+1/x*(x+1)

          1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)

           1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)

           1/2A=1/2-1/x+1

           A=(1/2-1/x+1):1/2

          A=1-2/x+1

Ta có A=1999/2001

Hay 1-2/x+1=1999/2001

           2/x+1=1-1999/2001

          2/x+1=2/2001

=>x+1=2001

=>x=2000

Bình luận (0)
HT
16 tháng 5 2016 lúc 19:51

Cho A = 1/3+1/6+1/10+...+2/x(x+1)

    1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2

    1/2A= 1/6+1/12+1/20+...+1/x(x+1)

    1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)

    1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1

    1/2A= 1/2-1/x+1

    A      = (1/2-1/x+1)/1/2

    A      = 1-2/x+1

Mà A=1999/2001

=> 1-2/x+1= 1999/2001

         2/x+1= 1-1999/2001

         2/x+1= 2/2001

     =>x+1=2001

     =>x     = 2000

 

Bình luận (0)
PD
16 tháng 5 2016 lúc 19:45

Đặt N=1/10+1/15+1/21+...+2/x*(x+1)

1/2N=1/20+1/30+1/42+...+1/x*(x+1)

1/2N=1/4*5+1/5*6+1/6*7+...+1/x*(x+1)

1/2N=1/4-1/5+1/5-1/6+1/6-1/7+...+1/x-1/x+1

1/2N=1/4-1/x+1

N=(1/4-1/x+1):1/2

N=1/2-2/x+1

Thiếu đề

Bình luận (0)

Các câu hỏi tương tự
CN
Xem chi tiết
AJ
Xem chi tiết
AJ
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết
TG
Xem chi tiết
KK
Xem chi tiết
LT
Xem chi tiết
KK
Xem chi tiết