Violympic toán 6

LM

Tìm số tự nhiên nhỏ nhất có 4 chữ số, sao cho khi số đó chia cho 5 dư 3, chia cho 7 dư 5 và chia cho 9 dư 7.

AH
25 tháng 12 2021 lúc 0:16

Lời giải:

Gọi số cần tìm là $a$. Theo bài ra ta có: $1000\leq a\leq 9999$

$a-3=(a+2)-5\vdots 5$

$a-5=(a+2)-7\vdots 7$

$a-7=(a+2)-9\vdots 9$

$\Rightarrow a+2\vdots 5,7,9$

$\Rightarrow a+2\vdots BCNN(5,7,9)$ hay $a+2\vdots 315$

$\Rightarrow a+2\in\left\{0; 315; 630; 945;1260;...\right\}$

$\Rightarrow a\in \left\{-2; 313; 628; 943; 1258;...\right\}$
Mà $1000\leq a\leq 9999$ và $a$ nhỏ nhất nên $a=1258$

Bình luận (0)