a) \(6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(n\) | \(-2\) (ko tm) | \(0\) | \(-3\) (ko tm) | \(1\) | \(-4\) (ko tm) | \(2\) | \(-7\) (ko tm) | \(5\) (tm) |
Vậy với \(n=\left\{0;1;5\right\}\) thì \(6⋮n+1\)
b) \(n^2+3n+5⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+5⋮n+3\)
Vì \(n\left(n+3\right)⋮n+3\) nên \(5⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(n+3\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(n\) | \(-4\) (ko tm) | \(-2\) (ko tm) | \(-8\) (ko tm) | \(2\) (tm) |
Vậy \(n=2\) thì \(n^2+3n+5⋮n+3\)
Đúng 0
Bình luận (1)
a)6⋮n+1
⇒n+1ϵƯ(6)={1;2;3;6}
⇒nϵ{0;1;2;5}
Vậy nϵ{0;1;2;5}
b)n2+3n+5⋮n+3
n.(n+3)+5⋮n+3
Vì n.(n+3)⋮n+3
⇒5⋮n+3
⇒n+3ϵƯ(5)={1;5)
VÌ nϵN⇒n+3≥3
⇒n+3ϵ{5}
⇒nϵ{2}
Vậy nϵ{2}
Nhớ tick cho mình nha !!!!!!!!!!!!!!
Đúng 0
Bình luận (0)