Violympic toán 9

DT

Tìm GTNN của y= \(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)

LD
9 tháng 3 2019 lúc 12:52

\(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}=\sqrt{-\left(x^2+4x+4\right)+25}-\)

\(\sqrt{-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}}\ge\sqrt{25}-\sqrt{\frac{49}{4}}=5-\frac{7}{2}=\frac{3}{2}\)

\(\Rightarrow GTNN\) của y = \(\frac{3}{2}\)

Bình luận (0)
NL
9 tháng 3 2019 lúc 18:43

ĐKXĐ: \(-2\le x\le5\)

Ta có \(\left(-x^2+4x+21\right)-\left(-x^2+3x+10\right)=x+11>0\) \(\forall x\in\left[-2;5\right]\)

\(\Rightarrow\sqrt{-x^2+4x+21}>\sqrt{-x^2+3x+10}\Rightarrow y>0\)

\(\Rightarrow y^2=\left(\sqrt{\left(7-x\right)\left(x+3\right)}-\sqrt{\left(5-x\right)\left(x+2\right)}\right)^2\)

\(\Rightarrow y^2=-2x^2+7x+31-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}\)

\(\Rightarrow y^2=-x^2+5x+14-x^2+2x+15-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}+2\)

\(\Rightarrow y^2=\left(x+2\right)\left(7-x\right)-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}+\left(x+3\right)\left(5-x\right)+2\)

\(\Rightarrow y^2=\left(\sqrt{\left(x+2\right)\left(7-x\right)}-\sqrt{\left(x+3\right)\left(5-x\right)}\right)^2+2\ge2\)

\(\Rightarrow y_{min}=\sqrt{2}\) khi \(\sqrt{\left(x+2\right)\left(7-x\right)}=\sqrt{\left(x+3\right)\left(5-x\right)}\Rightarrow x=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
MH
Xem chi tiết
TD
Xem chi tiết
EO
Xem chi tiết
NH
Xem chi tiết
DF
Xem chi tiết
VD
Xem chi tiết
NY
Xem chi tiết
LQ
Xem chi tiết