Violympic toán 9

HA

tìm gtnn;

a, A= 3y2 cộng 6y cộng 5.

b, B= [x cộng 1].[x2 cộng 4x cộng 5].[x cộng 5]

NB
5 tháng 7 2018 lúc 8:52

\(A=3y^2+6y+5\)

\(\Leftrightarrow A=3\left(y^2+2y+1\right)+2\)

\(\Leftrightarrow A=3\left(y+1\right)^2+2\ge2\) Với \(\forall y\in R\)

Dấu "=" xảy ra khi y = -1

Vậy GTNN của A là 2 khi y = -1

\(B=\left(x+1\right)\left(x^2+4x+5\right)\left(x+5\right)\)

\(\Leftrightarrow B=\left(x^2+6x+5\right)\left(x^2+4x+5\right)\)

\(\Leftrightarrow B=\left(t+x\right)\left(t-x\right)=t^2-x^2\)

\(\Leftrightarrow B=x^4+10x^2+25-x^2=x^4+9x^2+25\)

\(\Leftrightarrow B=\left(x^2+\dfrac{9}{2}\right)^2+\dfrac{19}{4}\ge\left(\dfrac{9}{2}\right)^2+\dfrac{19}{4}=25\) Với \(\forall x\in R\)

Dấu "=" xảy ra khi x = 0

Vậy GTNN Của B là 25 khi x = 0 .

Bình luận (1)

Các câu hỏi tương tự
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
MG
Xem chi tiết
HA
Xem chi tiết