Violympic toán 7

HT

tim gt nho nhat cua bieu thuc

/x-2019/+/2020-x/

NT
28 tháng 1 2020 lúc 20:15

\(T = \left| {x - 2019} \right| + \left| {2020 - x} \right| = \left| {x - 2019 + 2020 - x} \right| = 1 \)

Vậy \(T_{min}=1\Leftrightarrow2019\le x\le2020\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
28 tháng 1 2020 lúc 21:37

Đặt \(A=\left|x-2019\right|+\left|2020-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|\)

\(\Rightarrow A\ge\left|1\right|\)

\(\Rightarrow A\ge1.\)

Dấu '' = '' xảy ra khi:

\(\left(x-2019\right).\left(2020-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2019\ge0\\2020-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2019\le0\\2020-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2019\\x\le2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2019\\x\ge2020\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2019\le x\le2020\\x\in\varnothing\end{matrix}\right.\)

Vậy \(MIN_A=1\) khi \(2019\le x\le2020.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TC
Xem chi tiết
HM
Xem chi tiết
HD
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
TC
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
JA
Xem chi tiết