Violympic toán 7

LT

Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu hức sau:
a) A=-1/3+( x-1)2

b) B= 5-2(3x-1)4

c) C= ( x+1) 2 +/y-5/-2

KH
19 tháng 12 2019 lúc 19:49

a.

Ta có: \(\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\left(x-1\right)^2-\frac{1}{3}\ge-\frac{1}{3}\forall x\)

Vậy \(A_{Min}=-\frac{1}{3}\) \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
19 tháng 12 2019 lúc 20:19

a) \(A=-\frac{1}{3}+\left(x-1\right)^2\)

Ta có: \(\left(x-1\right)^2\ge0\) với mọi \(x\)

\(\Rightarrow-\frac{1}{3}+\left(x-1\right)^2\ge-\frac{1}{3}\) với mọi \(x\)

\(\Leftrightarrow A\ge-\frac{1}{3}\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\) \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(MinA=-\frac{1}{3}\Leftrightarrow x=1\).

b) \(B=5-2\left(3x-1\right)^4\)

Ta có: \(\left(3x-1\right)^4\ge0\) với mọi \(x\)

\(\Leftrightarrow-2\left(3x-1\right)^4\le0\) với mọi \(x\)

\(\Rightarrow5-2\left(3x-1\right)^4\le5\) với mọi \(x\)

\(\Leftrightarrow B\le5\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(3x-1\right)^4=0\Leftrightarrow3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)

Vậy \(MaxB=5\Leftrightarrow x=\frac{1}{3}\).

c) \(C=\left(x+1\right)^2+\left|y-5\right|-2\)

Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\)

\(\left|y-5\right|\ge0\) với mọi \(y\)

\(\Rightarrow\left(x+1\right)^2+\left|y-5\right|-2\ge-2\) với mọi \(x,y\)

\(\Leftrightarrow C\ge-2\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left|y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

Vậy \(MinC=-2\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\).

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NN
Xem chi tiết
DX
Xem chi tiết
VN
Xem chi tiết
DX
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết