so sánh:S=√1*2007 +√3*2005 +√5*2003 +...+√2007*1 và 1004^2
A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}\)
B = \(\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)
Tính \(\dfrac{B}{A}\)
Tìm số dư của A = 32005 + 42005 khi chia cho 11 và khi chia cho 13 ?
Bài 1:
a,với mọi số nguyên dương n thì:
\(3^{n+2}-2^{n+2}-2^n\) chia hết cho 10
b, Cho A= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....................+\frac{1}{2007}+\frac{1}{2008}\)
B= \(\frac{2007}{1}+\frac{2006}{2}+\frac{2005}{3}+............+\frac{2}{2006}+\frac{1}{2007}\)
Tính \(\frac{B}{A}\)
Bài 2 : Tìm số dư khi chia A = 19442005 cho 7
So sánh
\(\left(\frac{9}{11}-0.81\right)^{2005}......\frac{1}{10^{4010}}\)
c/m
72007+82008-92009 chia hết cho 10
Chứng minh rằng:
\(7^{2007}+8^{2008}-9^{2009}\) chia hết cho 10
Chứng minh rằng:
\(7^{2007}+8^{2008}-9^{2009}\) chia hết cho 10