Bài 6: Cộng, trừ đa thức

SK

Tìm đa thức P và đa thức Q biết :

a) \(P+\left(x^2-2y^2\right)=x^2-y^2+3y^2-1\)

b) \(Q-\left(5x^2-xyz\right)=xy+2x^2-3xyz+5\)

S2
24 tháng 3 2019 lúc 16:13

a) P + (x2 - 2y2) = x2 - y2 + 3y2 - 1

⇔ P = (x2 - y2 + 3y2 - 1) - (x2 - 2y2)

⇔ P = x2 + 2y2 - 1 - x2 + 2y2

⇔ P = 4y2 - 1

b) Q - (5x2 - xyz) = xy + 2x2 - 3xyz + 5

⇔ Q = (xy + 2x2 - 3xyz + 5) + (5x2 - xyz)

⇔ Q = xy + 2x2 - 3xyz + 5 + 5x2 - xyz

⇔ Q = xy + 7x2 - 4xyz + 5

Bình luận (0)
QD
19 tháng 4 2017 lúc 11:28

a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1

P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)

P = x2 – y2 + 3y2 – 1 - x2 + 2y2

P = x2 – x2 – y2 + 3y2 + 2y2 – 1

P = 4y2 – 1.

Vậy P = 4y2 – 1.

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

Q = 7x2 – 4xyz + xy + 5

Vậy Q = 7x2 – 4xyz + xy + 5.



Bình luận (0)
H24
26 tháng 3 2018 lúc 12:14

a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1

P = (x2 – y2 + 3y2 – 1) – (x2 – 2y2)

P = x2 – y2 + 3y2 – 1 – x2 + 2y2

P = x2 – x2 – y2 + 3y2 + 2y2 – 1

P = 4y2 – 1

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

Q = 7x2– 4xyz + xy + 5

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
TN
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
3T
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
VD
Xem chi tiết