NM

Tìm các khoảng đồng biến của hàm số: y = 2sin⁡x + cos⁡2x, x ∈ [0;π] A. (0; pi/2 B. (pi/2; pi) C. (0; pi/6) và pi/2; 5pi/6) D. (0;pi).

H24
15 tháng 8 2023 lúc 10:28

\(D=\left[0;\pi\right]\)

\(y'=2\cos x-2\sin2x=2\cos x-4\cos x.\sin x=2\cos x\left(1-2\sin x\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}2\cos x=0\\1-2\sin x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos x=0\\\sin x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\left(tm\right)\\x=\dfrac{\pi}{6}\left(tm\right)\\x=\dfrac{5\pi}{6}\left(tm\right)\end{matrix}\right.\)

Bảng biến thiên:

=> Hàm số y động biến trên \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

-> Chọn C

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TA
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
MT
Xem chi tiết
PK
Xem chi tiết
HK
Xem chi tiết