\(\frac{1}{a+b+c}=0,abc=\frac{abc}{1000}\)
Vậy: a + b + c = \(\frac{1000}{abc}\)
\(=>1000=\left(a+b+c\right)\times abc\)
Vì \(1000=10\times100=8\times125=5\times200=2\times500=4\times250\)
Nên \(abc\) chỉ có thể là một trong các số 100, 125, 200, 250, 500.
Ta lần lượt thử:
- Nếu \(abc=100\) thì \(a+b+c=1+0+0=1< 10\)( loại )
- Nếu \(abc=125\) thì \(a+b+c=1+2+5=8=8\)( chọn )
- Nếu \(abc=200\) thì \(a+b+c=2+0+0=2< 5\)( loại )
- Nếu \(abc=250\) thì \(a+b+c=2+5+0=7\)( loại )
- Nếu \(abc=500\) thì \(a+b+c=5+0+0=5>2\)( loại )
Vậy \(abc=125\)