\(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)
⇔ \(\dfrac{2a-1}{18}=\dfrac{3}{b}\)
⇒ \(\left(2a-1\right).b=18.3\)
⇔ \(\left(2a-1\right).b=54\)
Ta thấy \(2a-1\) là 1 số nguyên lẻ. Ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}2a-1=1\\b=54\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=1\\b=54\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}2a-1=3\\b=18\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=2\\b=18\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}2a-1=9\\b=6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}2a-1=27\\b=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=14\\b=2\end{matrix}\right.\)
TH5: \(\left\{{}\begin{matrix}2a-1=-1\\b=-54\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=0\\b=-54\end{matrix}\right.\)
TH6: \(\left\{{}\begin{matrix}2a-1=-3\\b=-18\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=-1\\b=-18\end{matrix}\right.\)
TH7: \(\left\{{}\begin{matrix}2a-1=-9\\b=-6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=-4\\b=-6\end{matrix}\right.\)
TH8: \(\left\{{}\begin{matrix}2a-1=-27\\b=-2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=-13\\b=-2\end{matrix}\right.\)
Vậy \(\left(a,b\right)\in\left\{\left(1;54\right);\left(2;18\right);\left(5;6\right);\left(14;2\right);\left(0;-54\right);\left(-1;-18\right);\left(-4;-6\right);\left(-13;-2\right)\right\}\)