Violympic toán 6

DX

Tìm \(a,b\in Z\) biết \(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)

HN
31 tháng 3 2021 lúc 20:59

\(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)

⇔ \(\dfrac{2a-1}{18}=\dfrac{3}{b}\)

⇒ \(\left(2a-1\right).b=18.3\)

⇔ \(\left(2a-1\right).b=54\)

Ta thấy \(2a-1\) là 1 số nguyên lẻ. Ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}2a-1=1\\b=54\end{matrix}\right.\)     ⇔   \(\left\{{}\begin{matrix}a=1\\b=54\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}2a-1=3\\b=18\end{matrix}\right.\)     ⇔    \(\left\{{}\begin{matrix}a=2\\b=18\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}2a-1=9\\b=6\end{matrix}\right.\)     ⇔    \(\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}2a-1=27\\b=2\end{matrix}\right.\)   ⇔    \(\left\{{}\begin{matrix}a=14\\b=2\end{matrix}\right.\)

TH5: \(\left\{{}\begin{matrix}2a-1=-1\\b=-54\end{matrix}\right.\)  ⇔    \(\left\{{}\begin{matrix}a=0\\b=-54\end{matrix}\right.\) 

TH6: \(\left\{{}\begin{matrix}2a-1=-3\\b=-18\end{matrix}\right.\)   ⇔   \(\left\{{}\begin{matrix}a=-1\\b=-18\end{matrix}\right.\)

TH7: \(\left\{{}\begin{matrix}2a-1=-9\\b=-6\end{matrix}\right.\)   ⇔    \(\left\{{}\begin{matrix}a=-4\\b=-6\end{matrix}\right.\)

TH8: \(\left\{{}\begin{matrix}2a-1=-27\\b=-2\end{matrix}\right.\)  ⇔    \(\left\{{}\begin{matrix}a=-13\\b=-2\end{matrix}\right.\)

Vậy \(\left(a,b\right)\in\left\{\left(1;54\right);\left(2;18\right);\left(5;6\right);\left(14;2\right);\left(0;-54\right);\left(-1;-18\right);\left(-4;-6\right);\left(-13;-2\right)\right\}\)

Bình luận (3)

Các câu hỏi tương tự
Xem chi tiết
SG
Xem chi tiết
BP
Xem chi tiết
HH
Xem chi tiết
Xem chi tiết
DX
Xem chi tiết
DX
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết