Violympic toán 7

NT

Tim a,b,c biet: \(a^2+4b^2+9=2ab+3a+6b\)

J
29 tháng 4 2019 lúc 20:23

\(a^2+4b^2+9=2ab+3a+6b\)

\(\Leftrightarrow2a^2+8b^2+18=4ab+6a+12b\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)

(do \(\left(a-2b\right)^2\ge0;\left(a-3\right)^2=0;\left(2b-3\right)^2=0\) )

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\) Vậy (a;b)=(3;3/2)

Bình luận (0)
Y
29 tháng 4 2019 lúc 21:02

\(\Leftrightarrow2\left(a^2+4b^2+9\right)=2\left(2ab+3a+6b\right)\)

\(\Leftrightarrow2a^2+8b^2+18-4ab-6a-12b=0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\a-3=0\\2b-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=3\\b=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
GT
Xem chi tiết
LM
Xem chi tiết
TT
Xem chi tiết
VH
Xem chi tiết
KE
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
LQ
Xem chi tiết