Ta có:\(\dfrac{a}{b}\)=\(\dfrac{4}{5}\)<=>\(\dfrac{a}{b}\)=\(\dfrac{140:4}{140:5}\)(140 là BCNN)
<=>\(\dfrac{a}{b}\)=\(\dfrac{35}{28}\)=\(\dfrac{5}{4}\)
Vậy a=5;b=4/ \(\dfrac{a}{b}\)=\(\dfrac{5}{4}\)
Ta có:\(\dfrac{a}{b}\)=\(\dfrac{4}{5}\)<=>\(\dfrac{a}{b}\)=\(\dfrac{140:4}{140:5}\)(140 là BCNN)
<=>\(\dfrac{a}{b}\)=\(\dfrac{35}{28}\)=\(\dfrac{5}{4}\)
Vậy a=5;b=4/ \(\dfrac{a}{b}\)=\(\dfrac{5}{4}\)
So sánh A; B; C biết
A = \(\left(-\dfrac{43}{51}\right).\left(-\dfrac{19}{80}\right)\)
B = \(\left(-\dfrac{7}{13}\right).\left(-\dfrac{4}{65}\right).\left(-\dfrac{8}{31}\right)\)
C = \(\dfrac{-5}{10}.\dfrac{-4}{10}.\dfrac{-3}{10}...\dfrac{3}{10}.\dfrac{4}{10}.\dfrac{5}{10}\)
Bài 1:
a. \(\left(5^{2010}+5^{2012}+5^{2014}\right):\left(5^{2011}+5^{2009}+5^{2007}\right)\)
b. \(\left(-\dfrac{7}{45}\right)-\left(-\dfrac{1}{4}\right)-\left(-\dfrac{3}{5}\right)+\dfrac{1}{12}+\dfrac{2}{3}+\dfrac{1}{39}-\left(-\dfrac{5}{9}\right)\)
Bài 1:
a,\(|x-3|+|2-x|=0\)
b,\(\left(2-\dfrac{3}{4}x\right).\left(x+1\right)=0\)
bài 2:
a,A=\(\dfrac{\dfrac{-6}{7}+\dfrac{6}{13}-\dfrac{6}{29}}{\dfrac{9}{7}-\dfrac{9}{13}+\dfrac{9}{29}}\)
b,B=\(\dfrac{\dfrac{2}{15}-\dfrac{2}{21}+\dfrac{2}{39}}{0,25-\dfrac{5}{28}+\dfrac{5}{52}}\)
c,C=\(\dfrac{50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}:\dfrac{1+\dfrac{2}{21}-\dfrac{5}{121}}{\dfrac{65}{121}-\dfrac{26}{71}-13}\)
tìm a và b :
a,\(\dfrac{a}{b}=\dfrac{13}{5};ƯCLN\left(a,b\right)=5\)
Câu 1 : Thực hiện phép tính 1 cách hợp lý :
a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\)
b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\)
c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\)
d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)
Câu 2 :
a) 12 ( x - 5 ) = 7x - 5
b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x - 3 ) 2012
Câu 3 :
1) Cho biểu thức S = 1 + 3 + 32 + 33 +...+ 3202 + 3 203
a) chứng tỏ rằng tổng S chia hết cho 52 .
b) Tìm Chữ số tận cùng trong tổng S .
2 ) Cho biểu thức A= \(\dfrac{2n+1}{2n+5}\) . Chứng tỏ rằng với mọi số tự nhiên n thì A là phân số tối giản .
Câu 4 : So sánh tổng gồm 1006 số hạng :
\(S=\dfrac{1}{1.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{1006.2011.2013}\) với \(\dfrac{2}{3}\)
1.
a, \(^{^2}\left(x-2\right)=9\) b,\(^{^3}\left(3x-1\right)=-8\) c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\) d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\) e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\) f,\(\left(\dfrac{1}{2}\right)^{2x-1}=8\)
2.tìm số tự nhiên n biết
a, \(3^{n-1}=27\) b, \(3^{n-1}=\dfrac{1}{243}\) c, \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\) d, \(\left(-\dfrac{1}{3}\right)^{n-5}=\dfrac{1}{81}\) e,\(2^{-1}.2^n+4.2^n=9.2^5\)
1) Tìm x biết:
\(\left(1-\dfrac{3}{10}-x\right):\left(\dfrac{19}{10}-1-\dfrac{2}{5}\right)+\dfrac{4}{5}=1\)
2) Tính nhanh
a)\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
b)\(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
Bài 1
\(a)A=\dfrac{\left|x\right|+2002}{2003}\)
\(b)B=\dfrac{-10}{\left|x\right|+16}\)
Rút gọn
a,\(\dfrac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}\)
b,\(\dfrac{-11^5.13^7}{11^5.13^8}\)
c, \(\dfrac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}\)