a) \(x\left(x+y\right)+y\left(x-y\right)\)
\(=x^2+xy+xy-y^2\)
\(=x^2+2xy-y^2\)
\(=x^2+2xy+y^2-2y^2\)
\(=\left(x+y\right)^2-2y^2\)
Thay x = -8 và y = 7
\(=\left(-8+7\right)^2-2.7^2\)
\(=\left(-1\right)^2-98\)
\(=1-98\)
\(=-97\)
b) \(x\left(x^2-y\right)-x\left(y^2-y\right)-y\left(x^2-y\right)\)
\(=x^3-xy-xy^2+xy-x^2y+y^2\)
\(=x^3-xy^2-x^2y+y^2\)
\(=x\left(x^2-y^2\right)-y\left(x^2-y\right)\)
\(=x\left(x-y\right)\left(x+y\right)-y\left(x^2-y\right)\)
Thay x = 1/2 và y = -100
\(=\dfrac{1}{2}\left(\dfrac{1}{2}+100\right)\left(\dfrac{1}{2}-100\right)-\left(-100\right)\left(\dfrac{1}{4}+100\right)\)
\(=\dfrac{103}{4}\)
\(a,x\left(x+y\right)+y\left(x-y\right)=x\left(x+y\right)-y\left(x+y\right)=\left(x-y\right)\left(x+y\right)^{\left(1\right)}\)
thay \(x=-8;y=7\) vào \(^{\left(1\right)}\), ta đc;
\(\left(x-y\right)\left(x+y\right)=\left(-8-7\right)\left(-8+7\right)=\left(-15\right).\left(-1\right)=15\)