Bài 7: Đa thức một biến

H24

Thu gọn và sắp xếp các hạng tử theo luỹ thừa giảm dần của biến. Tìm bậc, hệ số tự do, hệ số cao nhất của đa thức. 

a) A(x) = \(x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)

b) B(x) = \(-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)

c) C(y) = \(5y^2-2\left(y+1\right)+3y\left(y^2-2\right)+5\)

H24
3 tháng 4 2022 lúc 16:55

a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)

\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)

\(A\left(x\right)=2x^3-x+5\)

-  Bậc của đa thức A(x) là 3

 - Hệ số tự do: 5

- Hệ số cao nhất: 2

 

b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)

\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)

\(B\left(x\right)=-4x^5+2x+3\)

-  Bậc của đa thức B(x) là 5

 - Hệ số tự do: 3

- Hệ số cao nhất: \(-4\)

 

c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)

   \(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\) 

   \(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)

   \(C\left(y\right)=5y^2-2y+3+3y^3-6y\)

   \(C\left(y\right)=5y^2-8y+3+3y^3\)

   \(C\left(y\right)=3y^3+5y^2-8y+3\)

-  Bậc của đa thức C(y) là 3

 - Hệ số tự do: 3

- Hệ số cao nhất: 3

   

 

   

 

 

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
LD
Xem chi tiết
TA
Xem chi tiết
AH
Xem chi tiết