Ôn tập toán 6

NN

Thu gọn: \(\dfrac{1}{3}\)+ \(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}^{ }\)+...+ \(\dfrac{100}{3^{100}}\)

NT
6 tháng 5 2017 lúc 21:09

Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)

\(\Rightarrow3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{100}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)

Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3B-B=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2B=3-\dfrac{1}{3^{99}}\Rightarrow B=\dfrac{3}{2}-\dfrac{1}{3^{99}.2}\)

Do đó: \(2A=\dfrac{3}{2}-\dfrac{1}{3^{99}.2}-\dfrac{100}{3^{100}}=\dfrac{3^{101}}{3^{100}.2}-\dfrac{3}{3^{100}.2}-\dfrac{200}{3^{100}.2}=\dfrac{3^{101}-203}{3^{100}.2}\Rightarrow A=\dfrac{3^{101}-203}{3^{100}.4}\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PC
Xem chi tiết
NT
Xem chi tiết
JP
Xem chi tiết
TM
Xem chi tiết
HL
Xem chi tiết
NA
Xem chi tiết
TM
Xem chi tiết
SK
Xem chi tiết