Đặt \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{100}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)
Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3B-B=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2B=3-\dfrac{1}{3^{99}}\Rightarrow B=\dfrac{3}{2}-\dfrac{1}{3^{99}.2}\)
Do đó: \(2A=\dfrac{3}{2}-\dfrac{1}{3^{99}.2}-\dfrac{100}{3^{100}}=\dfrac{3^{101}}{3^{100}.2}-\dfrac{3}{3^{100}.2}-\dfrac{200}{3^{100}.2}=\dfrac{3^{101}-203}{3^{100}.2}\Rightarrow A=\dfrac{3^{101}-203}{3^{100}.4}\)
Vậy...