Ôn tập cuối năm phần hình học

PN

tam giác ABC vuông tại A, đường cao AH, trung tuyến BM, phân giác CD đồng quy tại O. CM: BC/AC=BH/CH
giúp mình với nha mn

BG
10 tháng 8 2021 lúc 9:38

a) BD.\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BD\sqrt{CH.BC}+CE\sqrt{BH.BC}=AH.BC=AB.AC\)

\(\Leftrightarrow BD\sqrt{AC^2}+CE\sqrt{AB^2}=AB.AC\Leftrightarrow\dfrac{BD}{AB}+\dfrac{CE}{AC}=1\) (đẳng thức đúng)

Áp dụng định lí Ta- lét ta có:

\(\dfrac{BD}{AB}=\dfrac{BH}{BC};\dfrac{CE}{AC}=\dfrac{CH}{BC}\)

\(\dfrac{BD}{AB}+\dfrac{CE}{AC}=\dfrac{BH+CH}{BC}=\dfrac{BC}{BC}=1\)

Bình luận (2)

Các câu hỏi tương tự
NL
Xem chi tiết
PT
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
XL
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
NA
Xem chi tiết