Chương III : Phân số

TP

So sánh:\(\dfrac{10^{2011}+1}{10^{2012}+1}và\dfrac{10^{2010}+1}{10^{2011}+1}\)

NH
9 tháng 2 2018 lúc 19:25

a/ Áp dụng bất đẳng thức :

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

Ta có :

\(\dfrac{10^{2011}+1}{10^{2012}+1}< 1\)

\(\Leftrightarrow\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2011}+1+9}{10^{2012}+1+9}=\dfrac{10^{2011}+10}{10^{2012}+10}=\dfrac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\dfrac{10^{2010}+1}{10^{2011}+1}\)

\(\Leftrightarrow\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2010}+1}{10^{2011}+1}\)

Bình luận (1)

Các câu hỏi tương tự
DH
Xem chi tiết
MQ
Xem chi tiết
ND
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
CV
Xem chi tiết
HD
Xem chi tiết
KP
Xem chi tiết
NT
Xem chi tiết