Ôn tập toán 6

HT

 

so sánh với 3

các bạn giúp mik với

 

\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)

NT
20 tháng 5 2016 lúc 10:19

\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)

\(=\left(1+1+1\right)+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

\(=3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

Có: \(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}>0\)

\(1+1+1+...+1>0\)

=> \(3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)>3\)

Hay \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)>3\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
VL
Xem chi tiết
HT
Xem chi tiết
ES
Xem chi tiết
DL
Xem chi tiết
HV
Xem chi tiết
DW
Xem chi tiết
SG
Xem chi tiết
H24
Xem chi tiết