Đại số lớp 7

KS

so sánh A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\) với \(\frac{1}{2}\)

khocroi

NT
8 tháng 12 2016 lúc 19:04

Ta có:

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2011}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2011}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{2012}}\)

\(\Rightarrow A=\left(1-\frac{1}{3^{2012}}\right).\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{3^{2012}}\)

\(\frac{1}{2}-\frac{1}{3^{2012}}< \frac{1}{2}\) nên \(A< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

 

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
YT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
HL
Xem chi tiết
CS
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NY
Xem chi tiết