ta thấy:\(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{21^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{20.21}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{2}{7}\)
=>A<\(\dfrac{2}{7}\)
lại thấy \(\dfrac{2}{7}=\dfrac{16}{56}\)(1)
\(\dfrac{-3}{-8}=\dfrac{3}{8}=\dfrac{21}{56}\left(2\right)\)
từ (1) và (2)
=>\(\dfrac{2}{7}< \dfrac{3}{8}\)
=>A<2/7<3/8 =>A<3/8
Đúng 0
Bình luận (0)