Ta có A = \(\dfrac{1919.161616}{323232.3838}=\dfrac{1919.161616}{2.1919.2.161616}=\dfrac{1}{2.2}=\dfrac{1}{4}\)
Vì\(\dfrac{1}{4}=\dfrac{25}{100}\) , mà \(\dfrac{25}{100}>\dfrac{25}{102}=>A>B\)
Ta có : \(A=\dfrac{1919\cdot161616}{323232\cdot3838}=\dfrac{1\cdot1}{2\cdot2}=\dfrac{1}{4}\)
Giả sử \(A=\dfrac{1}{4}=\dfrac{25}{100}\), mà \(\dfrac{25}{100}>\dfrac{25}{102}\)
\(\Rightarrow\) \(\dfrac{1}{4}>\dfrac{25}{102}\)
\(\Rightarrow\) \(A>B.\)