\(sin3x=3sinx-4sin^3x\Rightarrow sin^3x=\frac{3sinx-sin3x}{4}\)
\(cos3x=4cos^3x-3cosx\Rightarrow cos^3x=\frac{cos3x+3cosx}{4}\)
\(\Rightarrow sin3x.sin^3x+cos3x.cos^3x=sin3x\left(\frac{3sinx-sin3x}{4}\right)+cos3x\left(\frac{cos3x+3cosx}{4}\right)\)
\(=\frac{3}{4}\left(cos3x.cosx+sin3x.sinx\right)+\frac{1}{4}\left(cos^23x-sin^23x\right)\)
\(=\frac{3}{4}cos2x+\frac{1}{4}cos6x\)
\(=\frac{3}{4}cos2x+\frac{1}{4}\left(4cos^32x-3cos2x\right)\)
\(=cos^32x\)