Đại số lớp 7

TA

RÚT GỌN\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)......\left(1-\frac{1}{2016^2}\right)\)

LF
15 tháng 3 2017 lúc 18:18

\(A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{2016^2}\right)\)

\(=\left[\left(1^2\right)-\left(\dfrac{1}{2}\right)^2\right]\left[\left(1^2\right)-\left(\dfrac{1}{3}\right)^2\right]...\left[\left(1\right)^2-\left(\dfrac{1}{2016}\right)^2\right]\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1+\dfrac{1}{2016}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{2}{3}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2015}{2016}\cdot\dfrac{2017}{2016}\)

\(=\dfrac{1}{2}\cdot\dfrac{2017}{2016}=\dfrac{2017}{4032}\)

Bình luận (0)
LF
15 tháng 3 2017 lúc 18:21

\(A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{2016^2}\right)\)

\(=\left[\left(1\right)^2-\left(\dfrac{1}{2}\right)^2\right]\left[\left(1\right)^2-\left(\dfrac{1}{3}\right)^2\right]...\left[\left(1\right)^2-\left(\dfrac{1}{2016}\right)^2\right]\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1+\dfrac{1}{2016}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{2}{3}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2015}{2016}\cdot\dfrac{2017}{2016}\)

\(=\dfrac{1}{2}\cdot\dfrac{2017}{2016}=\dfrac{2017}{4032}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
TA
Xem chi tiết
NL
Xem chi tiết
LN
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết