\(\dfrac{25}{x^2-y^2}\sqrt{\dfrac{x^2-2xy+y^2}{625}};x>y>0?\\ =\dfrac{25}{x^2-y^2}\sqrt{\dfrac{\left(x-y\right)^2}{625}}\\ =\dfrac{25}{x^2-y^2}\cdot\dfrac{\sqrt{\left(x-y\right)^2}}{\sqrt{625}}\\ =\dfrac{25}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{25}\\ =\dfrac{1}{x+y}\)