a)P=(1-1/2).(1-1/3).(1-1/4).....(1-1/999).(1-1/1000)
b)A=3/4. 8/9.15/16.....2499/2500
c)B=(22/1.3) . (32/2.4) . (42/3.5)...(502/49.51)
1/1.3 - 1/2.4 + 1/3.5 - 1/4.6+.....+1/97.99-1/98.100
Thu gọn:
(1+1/1.3)(1+1/2.4)(1+1/3.5)....(1+1/99.100)
Các bn giúp mik nha!Mik cần gấp nạ!Các bn nhớ giải chi tiết nhé!Thank you@@@
S =1/1.3-1/2.4+1/3.5-1/4.6+1/5.7 - 1/6.8+1/7.9-1/8.10
Giải giúp đi !
S=(1+\(\frac{1}{2.4}\))+(1+\(\frac{1}{3.5}\))+(1+\(\frac{1}{4.6}\))+...+(1+\(\frac{1}{49.51}\))
tính theo cách hợp lí
a) \(\frac{3}{1.3}+\frac{3}{3.5}+.....+\frac{3}{49.51}\)
b) \(\frac{1}{2}-\frac{1}{2016.2015}-\frac{1}{2015.2014}-....-\frac{1}{3.2}\)
Tính: B= \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).......\left(1+\frac{1}{2014.2016}\right)\)
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
Tính A = \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(1+\dfrac{1}{99.101}\right)\)