Đại số lớp 7

DT

Rút gọn:

a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2000}\)

b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{1998.1999.2000}\)

c/ \(C=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)

QD
26 tháng 1 2017 lúc 11:48

a)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{2009.2010}\)

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2009}-\frac{1}{2010}\)

A=1-\(\frac{1}{2010}\)=\(\frac{2009}{2010}\)

c)C=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+......+\frac{1}{2006.2008}\)

C=\(\frac{1}{2}\).(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+..+\frac{1}{2006}-\frac{1}{2008}\))

C=\(\frac{1}{2}\).(\(\frac{1}{2}-\frac{1}{2008}\))

C=\(\frac{1}{2}\).\(\frac{1003}{2008}\)=\(\frac{1003}{4016}\)

Câu b mình chưa nghĩ ra

Chúc bạn học tốt!

Bình luận (2)
HA
26 tháng 1 2017 lúc 12:30

a) A = \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ...+ \(\frac{1}{2009.2000}\)

= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{2009}\) - \(\frac{1}{2000}\)

= 1 - \(\frac{1}{2000}\) = \(\frac{1999}{2000}\)

b) B = \(\frac{1}{1.2.3}\) + \(\frac{1}{2.3.4}\) + \(\frac{1}{3.4.5}\) + ... + \(\frac{1}{1998.1999.2000}\)

= \(\frac{1}{2}\) ( \(\frac{2}{1.2.3}\) + \(\frac{2}{2.3.4}\) + \(\frac{2}{3.4.5}\) + ... + \(\frac{2}{1998.1999.2000}\))

= \(\frac{1}{2}\) (\(\frac{1}{1.2}\) - \(\frac{1}{2.3}\) + \(\frac{1}{2.3}\) - \(\frac{1}{3.4}\) + \(\frac{1}{3.4}\) - \(\frac{1}{4.5}\) + ... + \(\frac{1}{1998.1999}\) - \(\frac{1}{1999.2000}\))

= \(\frac{1}{2}\) (\(\frac{1}{1.2}\) - \(\frac{1}{1999.2000}\))

= \(\frac{1}{2}\) (\(\frac{1}{2}\) - \(\frac{1}{3998000}\))

= \(\frac{1}{4}\) - \(\frac{1}{7996000}\) = ?

c) C = \(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + \(\frac{1}{6.8}\) + ... + \(\frac{1}{2006.2008}\)

= \(\frac{1}{2}\) (\(\frac{1}{2}\) - \(\frac{1}{4}\)) + \(\frac{1}{2}\)(\(\frac{1}{4}\) - \(\frac{1}{6}\)) + ... + \(\frac{1}{2}\)(\(\frac{1}{2006}\) - \(\frac{1}{2008}\))

= \(\frac{1}{2}\)(\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{6}\) + ... + \(\frac{1}{2006}\) - \(\frac{1}{2008}\))

= \(\frac{1}{2}\)(\(\frac{1}{2}\) - \(\frac{1}{2008}\))

= \(\frac{1}{2}\) . \(\frac{1003}{2008}\) = \(\frac{1003}{4016}\).

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
BC
Xem chi tiết
BA
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
LB
Xem chi tiết