Nếu một đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. Ngược lại, một đường kính đi qua trung điểm của một dây không phải là đường kính thì vuông góc với dây ấy.
Nếu một đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. Ngược lại, một đường kính đi qua trung điểm của một dây không phải là đường kính thì vuông góc với dây ấy.
Phát biểu các định lí về liên hệ giữa dây và khoảng cách từ tâm đến dây ?
Chứng minh định lí : Trong các dây của một đường tròn, dây lớn nhất là đường kính
Cho đường tròn (O), một đường kính AB cố định, một điểm I nằm giữa A và O sao cho AI = 1/2.AO (AI = AO/2). Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN, sao cho C không trùng với M,N và B. Nối AC cắt MN tại E. a) Chứng minh tứ giác IECB nội tiếp được trong đường tròn. b) Chứng minh AM^2 = AE.AC c) Hãy xác định ví trí điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Cho đường tròn O,R) , đường kính ab vuông góc với dây cung MN tại điểm H (H nằm giữa O và B ).Trên tia đối của tia NM lấy điểm C sao cho đoạn AC cắt (O) tại K khác A.Hai dây MN và BK cắt nhau ở E
a) Chứng minh tứ giác AHEK nội tiết
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia AC cắt tia MK tại F.Chứng minh tam giác NFK cân và EM*NC=EN*CM
Cho đoạn thẳng AB, điểm C nằm giữa A và B. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, CB. Đường vuông góc với AB tại C cắt nửa đường tròn lớn tại D. DA, DB cắt các nửa đường tròn có đường kính AC, CB theo thứ tự tại M, N
a) Tứ giác DMCN là hình gì ? Vì sao ?
b) Chứng minh hệ thức DM.DA = DN.DB
c) Chứng minh MN là tiếp tuyến chung của các nửa đường tròn có đường kính AC và CB
d*) Điểm C ở vị trí nào trên AB thì MN có độ dài lớn nhất ?
Cho (O;R) có đường kính AB vuông góc với dây cung MN tại H(Hnằm giữa O và B) trên tia MN lấy điểm C nằm ngoài đường tròn(O;R) sao cho đoạn thẳng AC cắt đường tròn (O;R) tại điểm K khác A,2 dây MN và BK cắt nhau ở E
a) Chứng minh AHEK là tứ giác nội tiếp
cho đtròn o và 1 dây AB khác đường kính, từ O kẻ OH vuông góc với AB tại H, tiếp tuyến tại A của đtròn cắt OH tại M; kẻ đường kính Bc, qua M kẻ đường thẳng vuông góc với MO, cắt CA ở N. Chứng minh:
a. MA2=MH.MO
b. cm AHMN là hcn và CH vuông góc vuông góc với NB.
c.MO cắt đtròn tại E và F ( E nằm giữ M và O).cm ME.HF=MF.EH
Bài 1:Cho đường tròn (O;R), đường kính AB, dây cung BC=R
a, Tính các cạnh và các góc chưa biết của tam giác ABC theo R
b, Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) ở D
CM: OD là đường trung trực của AC
tam giác ADC là hình gì? Vì sao?
c, CM: DC là tiếp tuyến của đường tròn (O)
d, Đường thẳng OD cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác ADC
Từ A ở bên ngoài đường tròn (O) vẽ tiếp tuyến AB với đường tròn ( B là tiếp điểm). Dây BC khác đường kính vuông góc với OA tại H.
a.Chứng minh rằng AC là tiếp tuyến của đường tròn (O)
b. Qua A vẽ cắt tuyến ADE của (O) ( D nằm giữa A và E). Gọi I là trung điểm của DE. Chứng minh rằng bổn điểm A; B: O: I cùng thuộc một đường tròn Giúp mình vs mn mình đang cần gấp đó ạ