Violympic toán 6

TT

p = 1/2 + 1/6 + 1/18 +....+1/4374

LQ
4 tháng 8 2019 lúc 17:14

Ta thấy:

\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4374}\\ =\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\right)\\ =\frac{1}{2}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

Mà:

\(\frac{1}{3}P=\frac{1}{2}\cdot\frac{1}{3}\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^7}\right)\\ =\frac{1}{2}\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)

Suy ra: \(P-\frac{1}{3}P=\frac{1}{2}\left[\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\right]\)

hay \(\frac{2}{3}P=\frac{1}{2}\left(\frac{1}{3^0}-\frac{1}{3^8}\right)=\frac{1}{2}\left(1-\frac{1}{6561}\right)=\frac{3280}{6561}\)

Vậy \(P=\frac{3280}{6561}:\frac{2}{3}=\frac{1640}{2187}\).

Chúc bạn học tốt nhaok.

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
HR
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết
NV
Xem chi tiết
TH
Xem chi tiết
LP
Xem chi tiết
NH
Xem chi tiết