Chương I : Đường thẳng vuông góc. Đường thẳng song song

NH

Ở miền trong của góc tù AOB vẽ các tia OC, OD sao cho OC ⊥ OA, OD ⊥ OB. Chứng tỏ rằng:

a. \(\widehat{AOD}=\widehat{BOC}\)

b. \(\widehat{AOB}+\widehat{COD}=180^O\)

TG
23 tháng 8 2020 lúc 19:53

a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)

b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)

Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)

\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)

Bình luận (0)
TT
25 tháng 8 2020 lúc 10:40

a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)

⇒ˆAOD=ˆBOC

b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)

⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ

Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB

⇒ˆAOB+ˆCOD=180 độ

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NN
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
CV
Xem chi tiết
ND
Xem chi tiết
CT
Xem chi tiết
DN
Xem chi tiết
DM
Xem chi tiết