Bài 8: Giải bài toán bằng cách lập phương trình. Luyện tập

MT

Một số tự nhiên có hai chữ số. Nếu lấy số đó trừ đi 2 lần tổng các chữ số của nó thì được kết quả là 51. Nếu lấy 2 lần chữ số hàng cộng với 3 lần chữ số hàng đơn vị thì được 29. Tìm số đã cho.

PT
8 tháng 1 2019 lúc 22:19

Gọi số cần tìm là \(\overline{xy}\)(11\(\le\)xy\(\le\)99; x,y\(\in\)N)

Vì nếu lấy số đó trừ đi 2 lần tổng các chữ số của nó thì đc kết quả là 51 nên ta có ft:

\(\overline{xy}\) - 2( x+y)=51

\(\Leftrightarrow\) 10x+y-2x-2y=51

\(\Leftrightarrow\) 8x-y=51

\(\Leftrightarrow\) y=8x-51(1)

Vì nếu lấy 2 lần chữ số hàng chục cộng vs 3 lần chữ số hàng đơn vị thì đc 29 nên ta có ft:

2x+3y=29(2)

Từ (1) và (2), ta có hệ ft:

\(\left\{{}\begin{matrix}y=8x-51\\2x+3y=29\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8x-51\\2x+3\left(8x-51\right)=29\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=8x-51\\26x=182\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy số cần tìm là 75

Bình luận (2)

Các câu hỏi tương tự
HX
Xem chi tiết
BB
Xem chi tiết
NK
Xem chi tiết
9L
Xem chi tiết
ND
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
KD
Xem chi tiết
AH
Xem chi tiết