Dao động cơ học

NX

Một con lắc đơn dao động điều hòa với chu kì 1s tại nơi có gia tốc trọng trường bằng 10m/s².lấy π²=10.Vật nhỏ của con lắc có khối lượng 100g.Lực hồi phục cực đại tác dụng lên con lắc bằng 0,1N.Tính lực căng dây treo khi vật nhỏ đi qua vị trí thế năng bằng một nửa động năng?

HT
24 tháng 7 2015 lúc 8:53

Với con lắc đơn, ta có hệ số hồi phục \(k=\frac{mg}{l}\)

Lực hồi phục: \(F_{hp}=-kx\)

Với x là li độ dài, \(x=\alpha l\)

Suy ra: \(F_{hp}=-\frac{mg}{l}.\alpha l=-mg\alpha\) \(\Rightarrow F_{hpmax}=mg\alpha_0\) \(\Rightarrow\alpha_0=\frac{F_{hpmax}}{mg}=\frac{0,1}{0,1.10}=0,1rad\)(1)

Lực căng dây: \(\tau=mg\left(3\cos\alpha-2\cos\alpha_0\right)=mg\left(3\left(1-2\sin^2\frac{\alpha}{2}\right)-2\left(1-2\sin^2\frac{\alpha_0}{2}\right)\right)=mg\left(1+\alpha_0^2-\frac{3}{2}\alpha^2\right)\)(do góc  \(\alpha\) rất nhỏ nên ta lấy gần đúng)

Tại vị trí \(W_t=\frac{1}{2}W_đ\Leftrightarrow W=3W_t\Leftrightarrow\alpha_0^2=3\alpha^2\Leftrightarrow\alpha=\frac{\alpha_0}{\sqrt{3}}\)

Như vậy, lực căng dây tại vị trí này là: \(\tau=mg\left(1+\alpha_0^2-\frac{3}{2}\alpha^2\right)=mg\left(1+\alpha_0^2-\frac{3}{2}\frac{\alpha_0^2}{3}\right)=mg\left(1+\frac{\alpha_0^2}{2}\right)\)

Thay từ (1) vào ta đc: \(\tau=0,1.10\left(1+\frac{0,1^2}{2}\right)=1,005N\)

 
Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
DT
Xem chi tiết
Xem chi tiết
TI
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
HP
Xem chi tiết
DT
Xem chi tiết
MN
Xem chi tiết