Chương I - Căn bậc hai. Căn bậc ba

QN

mn giúp em vs:

(x+1) mũ 4 + (x+3) mũ 4=2m

a, giải pt vs m=1

b, tìm m để pt có 2 no pb
 

NT
7 tháng 2 2022 lúc 12:37

a) \(\left(x+1\right)^4+\left(x+3\right)^4=2m\left(1\right)\)

Đặt \(x+2=t\)

Khi đó phương trình \(\left(1\right)\) trở thành \(\left(t-1\right)^4+\left(t+1\right)^4=2m\)

\(\Leftrightarrow2t^4+12t^2-2m+2=0\)

\(\Leftrightarrow t^4+6t^2-m+1=0\left(2\right)\)

Đặt \(t^2=u\left(u\ge0\right)\)

Khi đó phương trình \(\left(2\right)\) trở thành \(u^2+6u-m+1=0\left(3\right)\)

Thay \(m=1\) vào \(\left(3\right)\) ta có:

\(u^2+6u-1+1=0\Leftrightarrow u^2+6u=0\Leftrightarrow u\left(u+6\right)=0\Leftrightarrow\left[{}\begin{matrix}u=0\\u+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}u=0\left(\text{nhận}\right)\\y=-6\left(\text{loại}\right)\end{matrix}\right.\)

\(\Rightarrow x+2=0\Leftrightarrow x=-2\)

Vậy với \(m=1\) thì phương trình có nghiệm là \(x=-2\).

b) Để phương trình có hai nghiệm phân biệt thì \(\left(3\right)\) trái dấu \(\Leftrightarrow-m+1< 0\Leftrightarrow m>1\)

Vậy với \(m>1\) thì phương trình có hai nghiệm phân biệt.

Bình luận (0)

Các câu hỏi tương tự
HS
Xem chi tiết
H24
Xem chi tiết
SC
Xem chi tiết
H24
Xem chi tiết
DW
Xem chi tiết
MT
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
SN
Xem chi tiết