\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(=3+2^{x-1}=24-\left[4^2-\left(4-1\right)\right]\)
\(=3+2^{x-1}=24-\left[16-3\right]\)
\(\Rightarrow3+2^{x-1}=11\)
\(\Rightarrow2^{x-1}=11-3\)
\(\Rightarrow2^{x-1}=8\)
\(\Rightarrow2^{x-1}=2^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
\(\left(x-6\right)^2=\left(x-6\right)^3\)
\(\Leftrightarrow\left(x-6\right)^2-\left(x-6\right)^3=0\)
\(\Leftrightarrow\left(x-6\right)^2.\left(1-x+6\right)\text{=}0\)
\(\Leftrightarrow\left(x-6\right)^2.\left(7-x\right)\text{=}0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-6\right)^2\text{=}0\\7-x\text{=}0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\text{=}6\\x\text{=}7\end{matrix}\right.\)
Vậy.......
\(\left(x-6\right)^2=\left(x-6\right)^3\)
\(\left(x-6\right)^3-\left(x-6\right)^2\)
\(\left(x-6\right)^2\left(x-6-1\right)=0\)
\(\left(x-6\right)^2\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-6\right)^2=0\\\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-6=0\\\\x=7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\\\x=7\end{matrix}\right.\)
Vậy \(x=6;x=7\)
\(\left(x-6\right)^2=\left(x-6\right)^3\)
\(\Rightarrow\left(x-6\right)^3-\left(x-6\right)^2=0\)
\(\Rightarrow\left(x-6\right)^2\left(x-6-1\right)=0\)
\(\Rightarrow\left(x-6\right)^2\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x-5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=5\end{matrix}\right.\)