Đặt A = 1 + 2 + 22 + 23 + 24 + ... + 211
2A = 2 + 22 + 23 + 24 + 25 + ... + 212
2A - A = (2 + 22 + 23 + 24 + 25 + ... + 212) - (1 + 2 + 22 + 23 + 24 + ... + 211)
A = 212 - 1
Ta có: \(2^6\equiv1\left(mod9\right)\)
=> \(2^{12}\equiv1\left(mod9\right)\)
=> \(2^{12}-1⋮9\)
=> \(A⋮9\left(đpcm\right)\)
Đặt A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211
A = (1 + 23) + (2 + 24) + (22 + 25) + (26 + 29) + (27 + 210) + (28 + 211)
A = 9 + 2.(1 + 23) + 22.(1 + 23) + 26.(1 + 23) + 27.(1 + 23) + 28.(1 + 23)
A = 9 + 2.9 + 22.9 + 26.9 + 27.9 + 28.9
A = 9 .(1 + 2 + 22 + 26 + 27 + 28) \(⋮9\left(đpcm\right)\)