Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số

QL

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = - {x^3} + 3x + 1\);
b) \(y = {x^3} + 3{x^2} - x - 1\).

HM
26 tháng 3 2024 lúc 4:47

a) Tập xác định: \(D = \mathbb{R}\)

2. Sự biến thiên:

Ta có: \(y' = - 3{x^2} + 3,y' = 0 \Leftrightarrow x = \pm 1\)

Trên khoảng \(\left( { - 1;1} \right)\), \(y' > 0\) nên hàm số đồng biến. Trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.

Hàm số đạt cực đại tại \(x = 1\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = - 1\), giá trị cực tiểu \({y_{CT}} = - 1\)

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 3x + 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( { - 1 + \frac{3}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)} \right] = + \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 3x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( { - 1 + \frac{3}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)} \right] = - \infty \)

Bảng biến thiên:

 

3. Đồ thị:

Giao điểm của đồ thị hàm số \(y = - {x^3} + 3x + 1\) với trục tung là (0; 1).

Các điểm (1; 3); \(\left( { - 1; - 1} \right)\) thuộc đồ thị hàm số \(y = - {x^3} + 3x + 1\).

Đồ thị hàm số có tâm đối xứng là điểm (0; 1).

Bình luận (0)
HM
26 tháng 3 2024 lúc 4:48

b) 1. Tập xác định: \(D = \mathbb{R}\)

2. Sự biến thiên:

Ta có: \(y' = 3{x^2} + 6x - 1,y' = 0 \Leftrightarrow x = \frac{{ - 3 - 2\sqrt 3 }}{3}\) hoặc \(x = \frac{{ - 3 + 2\sqrt 3 }}{3}\)

Trên khoảng \(\left( {\frac{{ - 3 - 2\sqrt 3 }}{3};\frac{{ - 3 + 2\sqrt 3 }}{3}} \right)\), \(y' < 0\) nên hàm số nghịch biến. Trên khoảng \(\left( { - \infty ;\frac{{ - 3 - 2\sqrt 3 }}{3}} \right)\) và \(\left( {\frac{{ - 3 + 2\sqrt 3 }}{3}; + \infty } \right)\), \(y' > 0\) nên hàm số đồng biến trên mỗi khoảng đó.

Hàm số đạt cực đại tại \(x = \frac{{ - 3 - 2\sqrt 3 }}{3}\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = \frac{{ - 3 + 2\sqrt 3 }}{3}\), giá trị cực tiểu \({y_{CT}} = \frac{{18 - 16\sqrt 3 }}{9}\).

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 3{x^2} - x - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( {1 + \frac{3}{x} - \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} \right)} \right] = - \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} + 3{x^2} - x - 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( {1 + \frac{3}{x} - \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} \right)} \right] = + \infty \)

Bảng biến thiên:

3. Đồ thị:

Giao điểm của đồ thị hàm số \(y = {x^3} + 3{x^2} - x - 1\) với trục tung là (0; -1).

Các điểm (-1; 2); \(\left( {1;2} \right)\) thuộc đồ thị hàm số \(y = {x^3} + 3{x^2} - x - 1\).

Đồ thị hàm số có tâm đối xứng là điểm (-1; 2).

Bình luận (0)