Violympic toán 6

LY

ìm số nguyên dương n thỏa mãn : 1! + 2! +3! + .....+n! = p^2 + q^2 + 5895 Trong đó p và q là 2 số nguyên tố . quy ước rằng n! = 1 . 2 . 3 . 4 . .... . n

TH
24 tháng 11 2018 lúc 14:34

Ta thấy 1! + 2! = 3 \(⋮\) 3, còn từ 3! trở đi đương nhiên đều chia hết cho 3.

Do đó p2 + q2 + 5895 \(⋮\) 3. Mà 5895 \(⋮\) 3 nên p2 + q2 \(⋮\) 3 (1).

Lại có: p2 và q2 chia cho 3 dư 0 hoặc dư 1 do chúng đều là số chính phương (2).

Từ (1) và (2) \(\Rightarrow\) p2 \(⋮\) 3 và q2 \(⋮\) 3 \(\Rightarrow\) p \(⋮\) 3 và q \(⋮\) 3. Mà p và q là các snt nên p = q = 3 \(\Rightarrow\) 1! + 2! + 3! + ... + n! = 5913.

Vì n! < 5913 nên n < 8 \(\Rightarrow\) n \(\in\) {1; 2; 3; 4; 5; 6; 7}. Thử n với các số đó ta chỉ có n = 7 thỏa mãn.

Vậy n = 7.

Bình luận (1)

Các câu hỏi tương tự
LY
Xem chi tiết
HZ
Xem chi tiết
TT
Xem chi tiết
DX
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
LM
Xem chi tiết
TK
Xem chi tiết