Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

Hệ phương trình :\(\left\{{}\begin{matrix}x^2+y=6\\y^2+x=6\end{matrix}\right.\) có bao nhiêm nghiệm

NT
6 tháng 12 2020 lúc 20:26

\(\left\{{}\begin{matrix}x^2+y=6\left(1\right)\\y^2+x=6\left(2\right)\end{matrix}\right.\)

Ta trừ (1) và (2) \(\Rightarrow x^2-y^2+y-x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=1-y\end{matrix}\right.\)

Với x = y \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2+x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\\left[{}\begin{matrix}x=y=2\\x=y=-3\end{matrix}\right.\end{matrix}\right.\)

Với x = 1 - y \(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\y^2-y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\frac{1-\sqrt{21}}{2}\\y=\frac{1+\sqrt{21}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\frac{1+\sqrt{21}}{2}\\y=\frac{1-\sqrt{21}}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KR
Xem chi tiết
HT
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
AS
Xem chi tiết
NL
Xem chi tiết
GT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết